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Abstract 

A novel method for the analysis of the decay dynamics of densely produced, excited and ionic states is proposed, which makes it possible 
to estimate the rate constants of unimolecular and bimolecular processes from a transient emission or absorption curve. This method is based 
on a convolved autoregressive model, which is a linear form with respect to unknown model parameters, even for bimolecular excited state 
annihilation and ion recombination processes, so that the computation time is much shorter than that of a conventional non-linear least-squares 
fitting technique. The method can be extended to the analysis of a bimolecular process during irradiation by excitation light, which cannot be 
achieved using conventional techniques, © 1997 Elsevier Science S.A. 
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1. Introduction 

There have been major advances in time-resolved fluores- 
cence and absorption spectroscopy in the last decade, which 
have made it possible to observe decay curves with picosec- 
ond and femtosecond time resolution and with high accuracy 
and precision. In order to analyse the photophysical and pho- 
tochemical dynamics from the transient emission and absorp- 
tion curves, and to extract quantitative information on the 
decay processes, novel mathematical methods are indispen- 
sable in high-performance spectroscopy systems. A variety 
of mathematical methods, such as non-linear least-squares 
fitting, moment and modulating function methods, Fourier/ 
Laplace transform techniques and global compartmental 
analysis [ 1-3 ], have been widely applied to analyses of'exci- 
tation energy relaxation, electron and proton transfer, molec- 
ular vibrational relaxation and isomerization occurring in 
various molecular systems. 

These methods are normally based on linearity assump- 
tions: ( 1 ) the phenomenon obeys a linear differential equa- 
tion, so that the temporal profile is expressed as a 
multiexponential function; (2) the fluorescence and absorp- 
tion are measured by a linear detection system, so that an 
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observed decay curve x(t) is given as a convolution of the 
exponential decay with an instrumental response function 
y(t) as follows 

x(t) = A~ exp( - k f ) y ( t - t ' ) d t '  
i -  

( l )  

where ki and Ai are the rate constant and amplitude of the ith 
decay component respectively. Since Eq. ( 1 ) is a non-linear 
function of unknown parameters k~, the least-squares fitting 
to an observed curve requires a non-linear iterative algorithm, 
which is complicated to program and takes an extremely long 
time to compute. 

In a previous paper, we proposed a new method, based on 
a convolved autoregressive model, for estimating the decay 
parameters of transient curves [4]. The convolved autore- 
gressive model represents a decay curve of Eq. ( 1 ) as the 
following expression without any approximation 

M M 
x(nAt)= y'Ber[(n-i)At]+ ~-'C~v[(n-i+l)At] (2) 

i=1 i=! 

where Bi and Ci are model parameters which uniquely cor- 
respond to ki and A~ in Eq. ( 1 ) and A t is the sampling interval. 
Eq. (2) is a linear combination of model parameter:, to be 
estimated; therefore the computation time of model fitting is 
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much shorter than that of non-linear least-squares fitting, and 
the accuracy of estimation is as high as that of non-linear 
fitting. In addition, the method does not require programming 
parameters, such as initial values for estimates, acceleration 
coefficients and dumping factors. Furthermore, the method 
can be extended to a blind deconvolution which is an esti- 
mation without the use of an instrumental response function 
[5]. 

Unfortunately, the convolved autoregressive model of Eq. 
(2) is applicable only to dynamic processes given by linear 
differential equations. When intense excitation light is used 
to irradiate concentrated solutions or solids to produce dense 
excited states, it is expected that some interactions will be 
induced between the excited molecules, causing deviations 
from a linear differential equation [6--8]. For example, laser 
photolysis, which is conducted with an excitation pulse of 
miilijoules per square centimetre usually leads to S~-Sm and 
TI-T~ annihilation processes. In polar solvents, ionic species 
produced by an excitation pulse undergo homogeneous 
recombination in addition to geminate recombination, which 
are also non-linear decay processes. Another example is time- 
resolved microspectroscopy using laser scanning fluores- 
cence/absorption microscopes [9], where an excitation laser 
is usually focused onto a wavelength-sized spot. Even a nano- 
joule pulse from a continuous wave (cw) mode-locked laser 
is condensed to an intensity of miilijoules per square centi- 
metre, which can easily induce bimolecular processes of 
excited and ionic states. 

When densely formed, excited or ionic states decay by 
diffusion-limited bimolecular interaction; the decay curve of 
the emission intensity or transient absorbance x(t) obeys a 
rate equation [ 5 ] as 

dx(t___2) ffi _ k ~ x ( t )  - k ~ ( t )  2 ( 3 )  
dt 

where k, and kb are the rate constants of a unimolecular 
transition and bimolecular decay respectively. A rate constant 
of an excited state annihilation or ion recombination process 
can be converted from kb with a knowledge of the initial 
concentration of the excited or ionic molecules. A solution 
of Eq. (3 )  is given by 

1 
x(t)-(Xol +kdc_ l) exp(k~t) _ kb/_ l (4) 

where Xo is an abbreviation for x(0). Usually, the rate con- 
slant of a unimolecular transition k, is estimated from the tail 
of a decay, where the curve approaches an exponential func- 
tion, or from a decay curve observed on low-intensity exci- 
tation; a plot ofx(t) - ~ against exp(kut) is fitted to a straight 
line and kb is given by the intercept [5]. However, even a 
small error in the given k, value drastically degrades the 
accuracy of the estimate of kb. Without any doubt, direct 
fitting of Eq. (4) to an observed decay curve is superior to 
the above method for estimating both k, and kb with high 
accuracy. Unfortunately, the non-linear least-squares fitting 

requires a long computation time, as mentioned above. Fur- 
thermore, Eqs. (3) and (4) are valid only for a decay process 
after irradiation with excitation light; however, a bimolecular 
decay process on high-intensity excitation sometimes reduces 
the excited and ionic state decay times to values comparable 
with or shorter than the excitation pulse duration. A pumping 
term should be added to the right-hand side of Eq. (3) during 
excitation. Unfortunately, the differential equation with the 
pumping term is analytically impossible to solve, so that the 
bimolecular process during excitation cannot be analysed by 
analytical methods. 

In this paper, we propose a new method for analysing the 
decay dynamics of densely formed, excited states and ionic 
species. A convolved autoregressive model is modified to 
represent the non-linear bimolecular decay process, which is 
still linear with respect to unknown model parameters. A 
simple linear least-squares technique is used to fit the con- 
volved autoregressive model to a decay curve. In addition, 
the method has the ability to analyse a bimolecular decay 
process during irradiation by excitation light. 

2. Theory 

2.1. Analysis o f  a decay process after intense excitation 

When the time-resolved measurement of the relaxation 
processes of dense excited and ionic states is performed with 
a time interval of At, Eq. (4) can be rewritten in a discrete 
form as 

1 
x(nAt)  = (5) 

( x(: ! + kbk~ I) exp( k, n A t ) -  k~ku- I 

We now show that x(nAt)  given by Eq. (5) can also be 
expressed as the following convolved autoregressive model 

x ( n A t ) = B x [ ( n - l ) A t ] + C x ( n A t ) x [ ( n - l ) A t ]  (6) 

where B and C are model parameters which uniquely corre- 
spond to ku and kb as follows 

B=exp( - kuAt) (7) 

C=kbku ~(B- 1) (8) 

Eq. (6) shows that a decay curve x at the nth time is given 
by a linear combination of a value x at one-past time (the first 
term on the right-hand side) and a product ofx at the present 
and one-past times (the second term on the right-hand side). 
The derivation of this convolved autoregressive model is 
described below. 

First, we define a curve u(nAt)  as an inverse o fx (nAt )  as 

u(nAt)  =x (nA t )  -!  

=(Xo I +kbku - l )  exp(k, nAt) - kbk~ i (9) 

Using z transform [ 10], Eq. (9) becomes 

XO I + kbku -1 kbku - i  

U(Z) = 1 - exp(k,  A t ) z -  s 1 - z -  ! (10) 
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where U(z) represents a z transform of u(nAt). Rearrange- 
ment ofEq. ( I0)  yields 

{ 1 -- exp(k~At)z- 2} U(z) 

kb~-~{exp(k~At) - 1 } 
=x f f l4  l _ z _  t (11) 

An inverse z transform of Eq. ( 11 ) for n > 1 is given by 

u(nAt) -exp(kuAt)u[ (n - 1 ) At] 

= kbk~ ~{exp(k~At) - 1 } (12) 

This regressive equation of u(nAt) can be rewritten by the 
following expression with respect to x(nAt) 

x(nAt) = exp( - kuAt)x[ (n - 1 ) At] 

+[kbk~-i{exp(-k~At)-l}]x(nAt)x[(n-1)At] (13) 

This is just the convolved autoregressive model given by Eqs. 
(6)-(8). 

Eq. (6) is a linear form with respect to model parameters 
B and C even though the bimolecular decay is governed by a 
non-linear differential equation. Thus the unknown parame- 
ters can be estimated by linear least-squares fitting, where 
Eq. (6) is fitted to an observed curve so that the sum of the 
squared residuals between left- and right-hand sides at N 
sampling points is minimized. The least-squares estimates 
are given in a matrix form as 

p= ([X]t[X]) -t [X]'x (14) 

where 

p :  ~ ,  c j  ~ (15) 

x =  [x ( I ) ,  x(2) . . . . .  x ( N -  1) 1' (16) 

[ ] x(O), x( 1 ) . . . . .  x ( N -  2) 
I X ] =  x ( l ) x ( 0 ) ,  x ( 2 ) x ( l )  . . . . .  x ( N - 1 ) x ( N - 2 )  

(17) 

x(n) is an abbreviation of x(nAt). The rate constants of 
unimolecular and bimolecular decay, k~ and kb, are deter- 
mined from the given B and C values using Eqs. (7) and ( 8 ). 

2.2. Analysis of a decay process during intense excitation 

Eq. (6) is a regressive form so that x(nAt) can be deter- 
mined from x[ (n - 1 )At] as 

Bx[ (n- l)At] 
x(nAt) = (18) 

l--Cx[ (n-- l)At] 

Unfortunately, this relation is not valid for a bimolecular 
process during irradiation by excitation light, since the den- 
sity of the excited or ionic state is increased by excitation 
compensating for the decay process. If it is assumed that the 
increase in the number of excited or ionic molecules during 
a time period from ( n -  l ) A t  to nat is proportional to the 

intensity of excitation light at that time, the decay curve 
x(nAt) during excitation is given by 

Bx[ ( n -  l )At] 
x(nAt) = 1 - Cx[ ( n -  1)At] q-Ay(nAt) (19) 

where y(t) represents the temporal intensity profile of an 
excitation pulse and A is a constant relating to the quantum 
yield. Rearrangement of Eq. (19) results in 

x(nAt) =Bx[ ( n -  1)At] + Cx(nAt)x[ ( n -  1)At] 

+Ay(nAt) -ACy(nAt)x[(n-  1)At] (20) 

This is a convolved autoregressive model of a bimolecular 
decay process during excitation. 

A linear least-squares fitting of this model to an observed 
curve is given by the same expression as Eq. (14), while 
Eqs. (15) and (17) are replaced by 

p=[B,C,A,D]'  (21) 

[X] = 
r ] x(0), x ( l )  . . . . .  x ( N - 2 )  
/x (1 )x (0) ,  x(2)x(1) . . . . .  x ( N - l ) x ( N - 2 )  
l y(l) ,  y(2) . . . . .  y ( N -  1) 
Ly(1)x(O), y(2)x(1) . . . . .  y ( N - l ) x ( N - 2 )  

(22) 

respectively, where D = -AC, which is not used to estimate 
A and C. By substituting a decay curve x(nAt) and an exci- 
tation pulse shape y(nAt) into Eqs. (16) and (22), model 
parameters A, B and C are given by Eqs. (14) and (21), and 
rate constants ku and kb are determined using Eqs. (7) and 
(8). 

3. Numerical and experimental examples 

3.1. Analyses of computer-simulated decays 

We have analysed the computer-simulated decay curves to 
demonstrate the effectiveness of the present method. Since a 
bimolecular decay process during irradiation with excitation 
light cannot be simulated from an analytical expression, arti- 
ficial decay curves were computed from Eq. (5) for decay 
processes after excitation. Fig. 1 (a) and (b) show simulated 
decays with a common rate constant k~ of 1.0 x 107 S - I and 
different kb values of 1.0X 105 and 1.0X 104 s-~ counts- 
respectively. The initial intensity Xo and the sampling interval 
At were set to 103 and 0.4 ns respectively. The number of 
sampling points was 1024. The curves were contaminated 
with Poisson noise, whose standard deviation was equal to 
the square root of the intensity. Least-squares fitting of the 
convolved autoregressive model given by Eq. (6) was per- 
formed with a noise reduction technique proposed previously 
[4]. The calculation was executed on a work station (HP 
Series 700). 
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Fig. 1. Simulated decay curves with rate constants/~= 1.0× 107 s - t  and 
/q, = 1.0 × lO s s -  ' counts- ~ (a) and/q, = l.O X 104 s -  t counts- ~ (b) .  

The first column of Table I shows the rate constants esti- 
mated for the decay curves of Fig. 1 (a) and ( b ) by the present 
method. We prepared 100 curves for each decay with random 
noise, and the estimates for individual curves were averaged. 
Statistical errors were also calculated as a measure of the 
accuracy. For comparison, the rate constants kb were esti- 
mated by fitting a straight line to a plot of x(t)-' against 
exp(k~t), where k~ was assumed to be known exactly [5] 
(the second column of Table 1). The results show that the 
accuracy of the straight line fitting is lower than that of the 
proposed method in spite of the use of a priori information 
on ~ .  A non-linear l eas t . squares  method was also applied to 
the decay analyses of Fig. 1 (a) and (b), where the theoretical 
curve of Eq. (5) was fitted to the data. The program was 
written with reference to Bevington's work [ 11 ], which was 
refined to shorten the computation time. By comparing the 
results obtained using the proposed method with those 
obtained using non-linear least-squares fitting, no appreciable 
difference in the accuracy of estimation was found, but the 
computation time of the proposed method is approximately 
16 times shorter than that of the non-linear least-squares 
method. 

3.2. Analyses of fluorescence decays 

We have applied the present method to the analysis of the 
excited state annihilation processes of the pyrene excimer. It 
has been reported that pyrene forms an excimer readily in a 
concentrated solution of a low-viscosity solvent and exhibits 
diffusion-controlled bimolecular interaction on high-inten- 
sity excitation [ 5 ]. 

io '  

lo 

10 i 

lo ° 
0 100 200 300 400 

Time Ins  
Fig. 2. Fluorescence decay curves of pyrene excimer in toluene (0.25 mol 
dm-3) observed on excitation with intensity of approximately 3.2 nO cm-2 
(a) and approximately 1.3 mJ cm -2 (b). Excitation and emission wave- 
lengths were 355 and 480 nm respectively. (c) Temporal profile of an 
excitation pulse. 

Pyrene (Nacali Tesque Inc., GR grade) was recrystallized 
twice from ethanol after chromatography on silica gel-n- 
hexane. A toluene solution of pyrene (0.25 mol dm -3) was 
degassed by a freeze-pump-thaw method and placed in a 
quartz cell (optical path length, I mm). The sample was 
placed on an optical microscope (Nikon Optiphot-2) and 
excited with the third harmonic pulse of a Q-switched 
Nd:YAG laser (Spectron SL282G, 355 nm). The laser pulses 
were introduced into the microscope and focused into a spot 
of approximately 50 ttm by an objective lens ( ×  10, 
NA = 0.12). Fluorescence from the sample was collected by 
the same objective lens and detected with a polychromator- 
attached streak camera (Hamamatsu Photonics C4334; tem- 
poral resolution, 15 ps). 

Fig. 2 shows the fluorescence decay curves of pyrene in 
toluene, measured at 480 nm, where pyrene excimer emission 
only is observed. The intensities of the excitation pulse were 
approximately 3.2 and approximately 1.3 mJ cm -2 for the 
data in Fig. 2(a) and (b) respectively. Fig. 2(c) shows an 
excitation pulse profile obtained by measuring the scattered 
light (duration, approximately 5 ns). The whole curve, 
including the initial time region during irradiation with the 
excitation light, was analysed with the convolved autoregres- 
sire model of Eq. (20); this cannot be performed by straight 
line fitting or the non-linear least-squares method. Table 2 
shows the decay constants of Fig. 2(a) and (b) estimated 
using the pulse shape of Fig. 2(c). The computation time for 
each decay curve was 25 ms. The rate constants of the uni- 

Table I 
Estimated rate constants and computation time for the fitting of the data of Fig. 1 (a) and (b) by the convolved autoregressive (CAR), straight line (SL) and 
non-linear least-squares (NLLS) methods 

CAR SL NLLS 

k~ (s -~) " (0.999 +0.012) X 107 - 
/~ (s - t  coun ts - t ) ,  ( 1.001 +0.021) x l0 s (0.890 +0.015) X l0 s 
ku ( s - ' )  b ( 1.000 +0.006) × 107 - 
/~, (s-~ counts -~ ) b (1.003:1: 0.030)× 104 (0.926 + 0.017)× 104 
Computation time (ms) 45 5 

( ! .000 + 0.022) × 10 v 
(!.000 +0.017) × l0 s 
(0.999 +0.012) X 107 
( !.001 +0.039) × 104 
727 

"Fig. l ( a ) .  
bFig. l ( b ) .  
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Table 2 
Estimated rate constants for the data of Fig. 2(a) and (b) fitted by a con- 
volved autoregressive model 

/q (s -I ) ~, (s -I counts -t ) k~ (s -I mol -I dm 3) 

2.2× 10 v ~ 1.9X 10 3 lAX I0 m 
2.1X 10 7b 7.3X 10 3 1.3X 10 !° 

• Fig. 2(a). 
b Fig. 2(b). 

molecular decays k~ agree well with a reported value [ 5 ]. On 
the other hand, the bimolecular decay rate kb is dependent on 
the excitation intensity. The rate constant of the annihilation 
process of  the pyrene exeimer k~ can be obtained from kb 
using the estimated model parameter A and the concentration 
of the excited molecules. The concentrations were determined 
to be 1.4 × 10 -3 and 5.7 × 10 -4 tool dm -3 for 3.2 and 1.3 
mJ era-  ~ excitation respectively using the molar extinction 
coefficient of ground state pyrene at the excitation wave- 
length (e,,- 300 era-  t tool-  ! dm3). The estimated rate con- 
slants kss are 1.4 × l0 w and 1.3 × iO ~° s -  ~ mol - i dm 3 for the 
decays of  Fig. 2(a)  and (b) respectively, i.e. the rate constant 
is almost independent of  the excitation intensity and consis- 
tent with the diffusion-limited bimolecular reaction rate [ 12 ], 
which was calculated to be 1.1 × 10 t° s - t  mol-~ dm 3 using 
the viscosity of toluene (p = 5.9 × 10 -4 kg m -  ~ s -  ~) at room 
temperature (293 K). 

4. Conclusions 

A new method has been proposed for the analysis of the 
relaxation dynamics of excited states and ionic species on 
high-intensity excitation so that the rate constants of uni- 

molecular and bimolecular decays can be estimated from a 
transient curve. An advantage of the present method over the 
conventional non-linear least-squares technique is its 
extremely shor~ computation time, which is due to the linear 
algorithm based on a convolved at:toregressive model. The 
analysis can be performed on a desk top computer in a tol- 
erable time, while the conventional method requires a high- 
performance computer. Furthermore, this advantage is 
indispensable for analyses of many decay profiles, e.g. mul- 
tidimensional decay curves such as time-resolved spectra and 
dynamic imaging data [ 13 ]. The method can be extended to 
the analysis of a bimolecular decay process which overlaps 
excitation. 
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